证全等三角形的五种方法分别是?
展开全部
证全等三角形的五种方法有:
1、边边边:三边对应相等的两个三角形全等;边角边:两边和它们夹角对应相等的两个三角形全等;
2、角边角公理(ASA):两角和它们的夹角对应相等的两个三角形全等;
3、角角边纳轿举:两个角和其中;
4、一角的对边对应相等的两个三帆梁角形全等;
5、斜边直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
扩展资料:
不能验证全等三角形的判定:
AAA(角、角、角),指两个三角形的任何三个角都对应地相同。
但这不能判定全等三角形,但AAA能判定相似三角形。在几何学上,当两条线叠在一起时,便会形一个点和一个角。而且,若该线无限地廷长,或无限地放大,该角度都不会改变。该洞碧两个三角形是相似三角形,这两个三角形的关系是放大缩小,因此角度不会改变。
这样,便能得知若边无限地根据比例加长,角度都保持不变。因此,AAA并不能判定全等三角形。
但在球面几何上,AAA可以判定全等三角形(运用三角形与其极对称三角形的边角关系证明),而AAS不能判定全等三角形(球面三角形内角和大于180°)。
展开全部
边边边:三边对应相等的两个三角形全等;边角边:两边和它们夹角对应相等的两个三角形全等;角边角公理(ASA):两角和它们的夹角对应相等的两个三角形全等;角角边:两个角和其中一角的对边对应相等的两个三角形全等;斜边直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
证明三角形全等的五种方法
三角形基本简介
在同一平面内,由不在同一条直线的三条线段首尾相接所得的封闭图形。
三角形三个内角的和等于180度。
三角形任何两边的和大于第三边。
三角形任意两边之差小于第三边。
三角形的外角等于与它不相邻的两个内角的和。
三角形按角汪悔度分类
a.锐角三角形:三个角都小于90度。
b.直角三角形:简称Rt△,其中一个角等于90度。
c.钝角三角形:其中一个角一定大于90度,钝角大于九十度且小于一百八十度。
其中锐角三角形和钝角三角形统称为斜三角形。
三角形按边分类
不等边三角形:3条边都不相等。
等腰三角形:有2条边相等。
等边三角形:3条边都相等。
三角形判定方法
若一个三角形的三滚销边a,b,c(a<b<c)满大陵游足
a^2+b^2>c^2,则这个三角形是锐角三角形;
a^2+b^2=c^2,则这个三角形是直角三角形;
a^2+b^2<c^2,则这个三角形是钝角三角形。
证明三角形全等的五种方法
三角形基本简介
在同一平面内,由不在同一条直线的三条线段首尾相接所得的封闭图形。
三角形三个内角的和等于180度。
三角形任何两边的和大于第三边。
三角形任意两边之差小于第三边。
三角形的外角等于与它不相邻的两个内角的和。
三角形按角汪悔度分类
a.锐角三角形:三个角都小于90度。
b.直角三角形:简称Rt△,其中一个角等于90度。
c.钝角三角形:其中一个角一定大于90度,钝角大于九十度且小于一百八十度。
其中锐角三角形和钝角三角形统称为斜三角形。
三角形按边分类
不等边三角形:3条边都不相等。
等腰三角形:有2条边相等。
等边三角形:3条边都相等。
三角形判定方法
若一个三角形的三滚销边a,b,c(a<b<c)满大陵游足
a^2+b^2>c^2,则这个三角形是锐角三角形;
a^2+b^2=c^2,则这个三角形是直角三角形;
a^2+b^2<c^2,则这个三角形是钝角三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.证明三边相等。(SSS)
2.证明三角形的两边相等及其含察夹角对应相等。(SAS)
3.两角及其夹边对应相等。岩哪(ASA)
4.两角及其一角的对边对应相等。(AAS)
5.在谈枣茄一对直角三角形中,斜边及另一条直角边相等。(HL)
2.证明三角形的两边相等及其含察夹角对应相等。(SAS)
3.两角及其夹边对应相等。岩哪(ASA)
4.两角及其一角的对边对应相等。(AAS)
5.在谈枣茄一对直角三角形中,斜边及另一条直角边相等。(HL)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
但这不能判定全等三角形,但枝伏AAA能判清厅定相似三猛正携角形。在几何学上,当两条线叠在一起时,便会形一个点和一个角
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询