数列有界是极限存在的什么条件?
展开全部
必要条件。要是无界,肯定不存在一个有限稳定极限。但是有界也未必极限存在,有可能不断震荡。
有界数列指数列中的每一项均不超过一个固定的区间,其中分上界和下界。假设存在定值a,任意n有{An(n为下角标,下同)=B,称数列{An}有下界B,如果同时存在A、B使得数列{An}的值在区间[A,B]内,数列有界。
有界函数
并不一定是连续的。根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。一个特例是有界数列,其中X是所有自然数所组成的集合N。由ƒ (x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询