1.05的0次方至9次方相加等于多少?

 我来答
学习父母
2022-01-07 · TA获得超过115个赞
知道小有建树答主
回答量:312
采纳率:100%
帮助的人:14万
展开全部

一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。注:q=1时,an为常数列(n为下标)。

示例图

等比数列通式若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。(1)等比数列(Geometric Sequences)的通项公式是:an=a1×q^(n-1)【(a1≠0,q≠0)。】(1、n均为下标)

(2)求和公式:Sn=na1(q=1)

Sn=a1(1-q^n)/(1-q)

=(a1-a1q^n)/(1-q)

=(a1-an*q)/(1-q)

示例图

=a1/(1-q)-a1/(1-q)*q^n( 即a-aq^n)等比数列求和公式(前提:q≠ 1)

任意两项am,an的关系为an=am·q^(n-m);在运用等比数列的前n项和时,一定要注意讨论公比q是否为1.

(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k-1,k∈{1,2,…,n}

(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

等比中项定义:从第二项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中 项。

等比中项公式:an/a(n-1)=a(n+1)/an或者a(n-1)a(n+1)=an^2(括号内文字、n均为下标)

(5)无穷递缩等比数列各项和公式:

无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和。

(6)由等比数列组成的新的等比数列的公比:

{an}是公比为q的等比数列

1.若A=a1+a2+……+an

B=an+1+……+a2n

C=a2n+1+……a3n

则,A、B、C构成新的等比数列,公比Q=q^n

2.若A=a1+a4+a7+……+a3n-2

B=a2+a5+a8+……+a3n-1

C=a3+a6+a9+……+a3n

则,A、B、C构成新的等比数列,公比Q=q

(1)待定系数法:已知a(n+1)=2an+3,a1=1,求an

构造等比数列a(n+1)+x=2(an+x)

a(n+1)=2an+x,∵a(n+1)=2an+3 ∴x=3

所以(a(n+1)+3)/(an+3)=2

∴{an+3}为首项为4,公比为2的等比数列,所以an+3=a1*q^(n-1)=4*2^(n-1),an=2^(n+1)-3

(2) 定义法:已知Sn=a·2^n+b,,求an的通项公式。

∵Sn=a·2^n+b∴Sn-1=a·2^n-1+b

∴an=Sn-Sn-1=a·2^n-1

1.05的0次方至9次方相加的和
=(1.05^10-1)/(1.05-1)
≈20×0.628894626
=12.57789254.

青州大侠客

2022-01-07 · 健康爱好者,喜欢中医,让中医服务人民!
青州大侠客
采纳数:9853 获赞数:26167

向TA提问 私信TA
展开全部

这个是由10个数构成的等比数列,利用等比数列前n项和公式,

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hbc3193034
2022-01-07 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
利用等比数列前n项和公式,得
1.05的0次方至9次方相加的和
=(1.05^10-1)/(1.05-1)
≈20×0.628894626
=12.57789254.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sjzwuww
2022-01-07 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6839
采纳率:82%
帮助的人:2124万
展开全部
结果是:
12.577892535548828125
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2022-01-07
展开全部
0.5次方等于开方 1.05的0.5次方等于1.025
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式