n个集合的并集(容斥原理公式)

 我来答
户如乐9318
2022-06-11 · TA获得超过6679个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:141万
展开全部
n(A1∪A2∪...∪Am)=∑n(Ai)1≤i≤m-∑n(Ai∩Aj)1≤i≤j≤m+∑n(Ai∩Aj∩Ak)-…+(-1)m-1n(A1∩A2…∩Am)1≤I,j,k≤m
注:m-1是-1的指数
这种公式的形式是很复杂的
重在理解
理解了就很好用了
甚至不用背就可以自己写出公式来
解题的时候就得心应手
不过这个公式已经超出了高中的范畴了
高中最多也就讨论m=3的情形
用语言表达似乎很困难
就是说求几个集合的并集可以先把他们统统加起来
但是这样做有些地方就多加了
那么就要减掉一些 (由公式来判断什么需要减去)
但是这样做有些地方就多减了
那么就要加上一些 (由公式来判断什么需要加上)
.
如此重复继续下去
最后得到的结果就是这几个集合的并集
举个例子吧
集合 a1 ,a2 ,a3
a1={ 1 ,2 ,3 ,4 }
a2={ 2 ,3 ,4 ,5 }
a3={ 3 ,4 ,5 ,1 }
求三个集合的并集
按照这个公式
∑n(Ai)1≤i≤m = a1 + a2 + a3 = { 1 ,2 ,3 ,4 ,2 ,3 ,4 ,5 ,3 ,4 ,5 ,1 }
∑n(Ai∩Aj)1≤i≤j≤m = (a1∩a2 + a2∩a3 + a3∩a1) = { 2 ,3 ,4 } +{ 3 ,4 ,5 } + { 3 ,4 ,1}
∑n(Ai∩Aj∩Ak)1≤i≤j≤m = (a1∩a2∩a3) = { 3 ,4 }
代入公式
三个集合的并集= a1 + a2 + a3 - (a1∩a2 + a2∩a3 + a3∩a1) + (a1∩a2∩a3) = { 1 ,2 ,3 ,4 ,2 ,3 ,4 ,5 ,3 ,4 ,5 ,1 } - ( { 2 ,3 ,4 } +{ 3 ,4 ,5 } + { 3 ,4 ,1 } ) + ( { 3 ,4 } ) = { 1 ,2 ,3 ,4 ,5 }
以上就是这个公式的具体应用
我的表达不是很规范
但是这个公式的方法就是这样的
重在理解
我举的例题的答案其实可以一眼看穿
但是这个公式揭示了普遍原理,是用来解决复杂的问题的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式