线性代数:如何求特征值和特征向量?

 我来答
舒适还明净的海鸥i
2022-08-04 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:69.6万
展开全部

线性代数的学习中,掌握方法很重要。下面就为大家慢慢解析,如何求特征值和特征向量

特征值和特征向量的相关定义

  • 01

    首先我们需要了解特征值和特征向量的定义,如下图;

  • 02

    齐次性线性方程组和非其齐次线性方程组的区别,如下图;

  • 03

    特征子空间的定义,如下图;

  • 04

    特征多项式的定义,如下图;

  • 05

    特征值的基本性质,如下图;

齐次线性方程组解法

  • 01

    齐次线性方程组的特征就是等式右边为0,以消元法简化;

  • 02

    在初等数学方程组中都是有唯一解的,而在线性代数中,我们把这种情况称为方程组“系数矩阵的秩为1”,记为r(A)=1,当矩阵的秩小于未知数的个数时,方程组有无数个解;当矩阵的秩等于未知数的个数时,方程组只有零解。
    由于上诉方程组有两个未知数,而r(A)=1<2,所以此组有无数个解。设 y=2 ,则 x=1;再设k为任意常数,则 x=k, y=2k为方程组的解,写成矩阵的形式为:

非齐次线性方程组解法

  • 01

    非齐次线性方程组因为不等于0,看起来很复杂,其实方法还是先用消元法简化步骤;

  • 02

    这一次进行初等行变换后,对于任意的非齐次线性方程组,当 r(A)=r(A|b)=未知数的个数时,非齐次线性方程组有唯一解;当 r(A)=r(A|b)<未知数的个数时,非齐次线性方程组有无数个解;当 r(A) ≠r(A|b) 时,非齐次线性方程组无解。
    可见 r(A)=r(A|b)=3,所以[A|b]有唯一解,写回方程组形式:

例题解析

  • 01

    求下列矩阵的特征值和特征向量;

  • 02

    矩阵特征值和特征向量的一般解法;

  • 03

    试证明A的特征值唯有1和2;

  • 04

    证明性问题还是需要解出特征值。

关于特征值与特征向量的理解

  • 01

    对于特征值与特征向量,总结起来大概分为三种理解:

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式