展开全部
(I)
dy/dx = 1/(dx/dy)
d^2y/dx^2
=d/dx(dy/dx)
=d/dx[ 1/(dx/dy) ]
= [-1/(dx/dy)^2 ] . d/dx (dx/dy)
= [-1/(dx/dy)^2 ] . d/dy (dx/dy) / (dx/dy) (链式法则)
= [-1/(dx/dy)^2 ] . (d^2x/dy^2) / (dx/dy)
=-(d^2x/dy^2)/(dx/dy)^3 (1)
(II)
带入(1)式
y''+(sinx-x)(y')^3 =0
-(d^2x/dy^2)/(dx/dy)^3 +(sinx-x)/(dx/dy)^3 =0
(d^2x/dy^2) -(sinx-x) =0 (2)
let
u= dx/dy
du/dx = d/dy( dx/dy)/ ( dx/dy)
du/dx =(d^2x/dy^2) /( dx/dy)
(d^2x/dy^2) = u du/dx
from (2)
(d^2x/dy^2) -(sinx-x) =0
u du/dx =(sinx-x)
∫udu = ∫(sinx-x) dx
(1/2)u^2 = -cosx - (1/2)x^2 +C'
u^2 = -2cosx - x^2 +C
u = √(-2cosx - x^2 +C)
dx/dy = √(-2cosx - x^2 +C)
dy/dx = 1/√(-2cosx - x^2 +C)
y = ∫ dx/√(-2cosx - x^2 +C)
dy/dx = 1/(dx/dy)
d^2y/dx^2
=d/dx(dy/dx)
=d/dx[ 1/(dx/dy) ]
= [-1/(dx/dy)^2 ] . d/dx (dx/dy)
= [-1/(dx/dy)^2 ] . d/dy (dx/dy) / (dx/dy) (链式法则)
= [-1/(dx/dy)^2 ] . (d^2x/dy^2) / (dx/dy)
=-(d^2x/dy^2)/(dx/dy)^3 (1)
(II)
带入(1)式
y''+(sinx-x)(y')^3 =0
-(d^2x/dy^2)/(dx/dy)^3 +(sinx-x)/(dx/dy)^3 =0
(d^2x/dy^2) -(sinx-x) =0 (2)
let
u= dx/dy
du/dx = d/dy( dx/dy)/ ( dx/dy)
du/dx =(d^2x/dy^2) /( dx/dy)
(d^2x/dy^2) = u du/dx
from (2)
(d^2x/dy^2) -(sinx-x) =0
u du/dx =(sinx-x)
∫udu = ∫(sinx-x) dx
(1/2)u^2 = -cosx - (1/2)x^2 +C'
u^2 = -2cosx - x^2 +C
u = √(-2cosx - x^2 +C)
dx/dy = √(-2cosx - x^2 +C)
dy/dx = 1/√(-2cosx - x^2 +C)
y = ∫ dx/√(-2cosx - x^2 +C)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询