数列有界和收敛的关系是什么?
收敛的函数一定有界,但有界不一定收敛,收敛是有界的充分不必要条件。数列收敛则一定有界。 请注意这里是数列,而不是函数。例子:数列{1/x}(x\u003e0),x是正整数,当然有上界且有下界。注意数列的定义域都是正整数。
要看是不是正向级数,是的话是充分必要条件,不是的话,是前者是后者的充分条件,正向级数的证明思路:正向级数是单调增加数列,如果有界,根据单调有界必收敛定理,正向级数收敛,反之,级数收敛则有界(同济第一章很前面的定理) 。
首先,收敛和有极限是一个概念。其次,函数收敛能推出它是局部有界的。【关于这个局部,如果已知的是x→x0时函数有极限,则这个局部是指x0的某个δ临域。
如果已知的是x→∞时函数有极限,则这个局部指的是x\u003e+∞或x\u003c-∞】但是有界不一定能推出收敛(有极限)【如函数F(x)=sinx,它是有界的,但当x→∞时它并不收敛。】 综上,收敛\u003c=\u003e有极限,收敛=\u003e有界。
函数收敛
定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
收敛的定义方式很好的体现了数学分析的精神实质。
如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数。
对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。
函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项级数 ,因而有一确定的和s。
这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)。
记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0。