请问1/3×1/4等于几谁知道?
1/3×1/4=1/12。
分数定义:
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
分数单位:
把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
分数的意义:
在分数里,中间的横线叫做分数线;分数线下面的数叫做分母,表示把单位“1”平均分成多少份;分数线上面的数叫做分子,表示有这样的多少份。
分数的基本性质:
分数的分子和分母同时乘或者除以一个不为零的数,分数的大小不变。
分数的分类
分数分为真分数和假分数。真分数分为整数和带分数。
(1)真分数:分子比分母小的分数叫做真分数,真分数小于1。
(2)假分数:分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或者等于1。(3)带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
分数的读写
(1)真分数、假分数的读法和写法①读法:先读分母、再读“分子”。
②写法:写真分数或假分数时,先写出分数线,再写分母,最后写分子。
分数的大小比较
(1)约分定义:把一个分数化成和它相等,但分子和分母都比较小的分数叫约分。最简分数:分子和分母互质的分数叫做最简分数。约分的方法①逐次约分:用分子和分母的公因数(1除外)逐次去除分子和分母,直到得出最简分数为止。②一次约分:用分子和分母的最大公因数去除分子和分母,直接得到最简分数。③特殊分数的约分:分子、分母末尾有零的,可以先划去同样多的0,再约分。
(2)通分定义:把异分母分数分别化成和原来分数相等的同分母分数叫通分。通分的方法:先求出几个分数的分母的最小公倍数,把它作为这几个分数的公分母,然后依据分数的基本性质,把原分数分别化成以公分母为分母的分数。
(3)分数的大小比较①同分母分数:分母相同的两个分数,分子大的分数比较大。②同分子分数:分子相同的两个分数,分母小的分数比较大。③分子分母都不相同的分数:先通分,把它们化成分母相同的分数,然后进行比较。也可以先把各个分数分别化成小数后再比较大小。④带分数:先比较整数部分,整数部分大的那个带分数就大,如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。⑤假分数:将假分数化成带分数或整数后再比较大小。
分数乘法:
整数乘分数:分母不变,分子和整数相乘.
分数乘分数:分子乘分子作为积的分子,分母乘分母作为积的分母。
所以1/3×1/4=(1×1)/(3×4)=1/12。
假想你正与被关在另一个屋子里的“嫌疑”人进行囚犯两难处境的博弈。而且,再设想这种博弈不是进行一次而是多次。你博弈最后的得分是你被监禁的总年数。你希望使这种得分尽可能地少。你应该用什么战略?你应该从坦白还是保持沉默开始?另一个参与者的行动会如何影响你以后的坦白决策?
多次的囚犯两难处境是极为复杂的博弈。为了鼓励合作,参与者应该相互惩罚不合作行为。但以前描述的杰克和吉尔的水卡特尔的战略——只要另一方违约,一方就永远违约——得不到宽恕。在反复许多次的博弈中,在不合作时期之后,允许参与者回到合作结果的战略,可能是较合人意的。
为了说明哪一种战略最好,政治学家罗伯特?阿克塞尔罗德(Robert Axelrod)进行了一场比赛。人们通过输人为反复进行囚犯的两难处境而设计的电脑程序进入比赛。每个进行博弈的程序都对应于所有其他程序。得到狱中总年数最少的程序的是“赢家”。
赢家结果是被称为一报还一报的简单战略。根据一报还一报,参与者应该从合作开始,然后上一次另一个参与者怎么作自己也怎么做。因此,一报还一报参与者要一直合作到另一方违约时为止;他违约到另一方重新合作时为止。换句话说,这种战略从友好开始,惩罚不友好的参与者,而且,如果对方改变就给予原谅。令阿克塞尔罗德惊讶的是,这种简单的战略比人们输人的所有较复杂的战略都好。