Zookpeer是什么?在系统中如何起作用?
1个回答
展开全部
Zookeeper分布式服务框架是Apache Hadoop的一个子项目,它主要是用来解决分布式应用中经常遇到的一些数据管理问题。如:统一命名服务、状态同步服务、集群管理、分布式应用配置项的管理等。
我们先看看它都提供了哪些功能,然后再看看使用它的这些功能能做点什么。
简单的说,zookeeper=文件系统+通知机制。
Zookeeper维护一个类似文件系统的数据结构:
每个子目录项如 NameService 都被称作为 znode,和文件系统一样,我们能够自由的增加、删除znode,在一个znode下增加、删除子znode,唯一的不同在于znode是可以存储数据的。
客户端注册监听它关心的目录节点,当目录节点发生变化(数据改变、被删除、子目录节点增加删除)时,zookeeper会通知客户端。
这个似乎最简单,在zookeeper的文件系统里创建一个目录,即有唯一的path。在我们使用tborg无法确定上游程序的部署机器时即可与下游程序约定好path,通过path即能互相探索发现,不见不散了。
程序总是需要配置的,如果程序分散部署在多台机器上,要逐个改变配置就变得困难。
可以把这些配置全部放到zookeeper上去,保存在 Zookeeper 的某个目录节点中,然后所有相关应用程序对这个目录节点进行监听,一旦配置信息发生变化,每个应用程序就会收到 Zookeeper 的通知,然后从 Zookeeper 获取新的配置信息应用到系统中就好。
集群管理无在乎两点:是否有机器退出和加入、选举master。
对于第一点,所有机器约定在父目录GroupMembers下创建临时目录节点,然后监听父目录节点的子节点变化消息。一旦有机器挂掉,该机器与 zookeeper的连接断开,其所创建的临时目录节点被删除,所有其他机器都收到通知:某个兄弟目录被删除,于是,所有人都知道:它下船了。当然又会有新机器加入,也是类似:所有机器收到通知---新兄弟目录加入,highcount又有了,有人上船了。
对于第二点,我们假设机器创建临时顺序编号目录节点,每次选取编号最小的机器作为master就好。
有了zookeeper的一致性文件系统,锁的问题变得容易。锁服务可以分为两类,一个是保持独占,另一个是控制时序。
对于第一类,我们将zookeeper上的一个znode看作是一把锁,通过createznode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。厕所有言:来也冲冲,去也冲冲,用完删除掉自己创建的distribute_lock 节点就释放出锁。
对于第二类, /distribute_lock 已经预先存在,所有客户端在它下面创建临时顺序编号目录节点,和选master一样,编号最小的获得锁,用完删除,依次方便。
两种类型的队列:
1、 同步队列,当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达。
2、队列按照 FIFO 方式进行入队和出队操作。
第一类,在约定目录下创建临时目录节点,监听节点数目是否是我们要求的数目。
第二类,和分布式锁服务中的控制时序场景基本原理一致,入列有编号,出列按编号。
Zookeeper中的角色主要有以下三类:
系统模型如图所示:
Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分 别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。
为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上 了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个 新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。
每个Server在工作过程中有三种状态:
当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的 Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。先介绍basic paxos流程:
通过流程分析我们可以得出:要使Leader获得多数Server的支持,则Server总数必须是奇数2n+1,且存活的Server的数目不得少于n+1.
选完leader以后,zk就进入状态同步过程。
Leader主要有三个功能:
PING消息是指Learner的心跳信息;REQUEST消息是Follower发送的提议信息,包括写请求及同步请求;ACK消息是 Follower的对提议的回复,超过半数的Follower通过,则commit该提议;REVALIDATE消息是用来延长SESSION有效时间。
Leader的工作流程简图如下所示,在实际实现中,流程要比下图复杂得多,启动了三个线程来实现功能。
Follower主要有四个功能:
Follower的消息循环处理如下几种来自Leader的消息:
Follower的工作流程简图如下所示,在实际实现中,Follower是通过5个线程来实现功能的。
https://blog.csdn.net/xinguan1267/article/details/38422149
https://blog.csdn.net/gs80140/article/details/51496925
https://www.2cto.com/kf/201708/668587.html
https://blog.csdn.net/milhua/article/details/78931672
P.S. 这篇文章是本人对网络上关于ZK的文章阅读之后整理所得,作为入门级的了解。个人觉得看了上面的内容就能基本了解Zookeeper的作用了,后面在结合实际项目使用加深自己的了解。
end
我们先看看它都提供了哪些功能,然后再看看使用它的这些功能能做点什么。
简单的说,zookeeper=文件系统+通知机制。
Zookeeper维护一个类似文件系统的数据结构:
每个子目录项如 NameService 都被称作为 znode,和文件系统一样,我们能够自由的增加、删除znode,在一个znode下增加、删除子znode,唯一的不同在于znode是可以存储数据的。
客户端注册监听它关心的目录节点,当目录节点发生变化(数据改变、被删除、子目录节点增加删除)时,zookeeper会通知客户端。
这个似乎最简单,在zookeeper的文件系统里创建一个目录,即有唯一的path。在我们使用tborg无法确定上游程序的部署机器时即可与下游程序约定好path,通过path即能互相探索发现,不见不散了。
程序总是需要配置的,如果程序分散部署在多台机器上,要逐个改变配置就变得困难。
可以把这些配置全部放到zookeeper上去,保存在 Zookeeper 的某个目录节点中,然后所有相关应用程序对这个目录节点进行监听,一旦配置信息发生变化,每个应用程序就会收到 Zookeeper 的通知,然后从 Zookeeper 获取新的配置信息应用到系统中就好。
集群管理无在乎两点:是否有机器退出和加入、选举master。
对于第一点,所有机器约定在父目录GroupMembers下创建临时目录节点,然后监听父目录节点的子节点变化消息。一旦有机器挂掉,该机器与 zookeeper的连接断开,其所创建的临时目录节点被删除,所有其他机器都收到通知:某个兄弟目录被删除,于是,所有人都知道:它下船了。当然又会有新机器加入,也是类似:所有机器收到通知---新兄弟目录加入,highcount又有了,有人上船了。
对于第二点,我们假设机器创建临时顺序编号目录节点,每次选取编号最小的机器作为master就好。
有了zookeeper的一致性文件系统,锁的问题变得容易。锁服务可以分为两类,一个是保持独占,另一个是控制时序。
对于第一类,我们将zookeeper上的一个znode看作是一把锁,通过createznode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁。厕所有言:来也冲冲,去也冲冲,用完删除掉自己创建的distribute_lock 节点就释放出锁。
对于第二类, /distribute_lock 已经预先存在,所有客户端在它下面创建临时顺序编号目录节点,和选master一样,编号最小的获得锁,用完删除,依次方便。
两种类型的队列:
1、 同步队列,当一个队列的成员都聚齐时,这个队列才可用,否则一直等待所有成员到达。
2、队列按照 FIFO 方式进行入队和出队操作。
第一类,在约定目录下创建临时目录节点,监听节点数目是否是我们要求的数目。
第二类,和分布式锁服务中的控制时序场景基本原理一致,入列有编号,出列按编号。
Zookeeper中的角色主要有以下三类:
系统模型如图所示:
Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分 别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。
为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上 了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个 新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。
每个Server在工作过程中有三种状态:
当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的 Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。先介绍basic paxos流程:
通过流程分析我们可以得出:要使Leader获得多数Server的支持,则Server总数必须是奇数2n+1,且存活的Server的数目不得少于n+1.
选完leader以后,zk就进入状态同步过程。
Leader主要有三个功能:
PING消息是指Learner的心跳信息;REQUEST消息是Follower发送的提议信息,包括写请求及同步请求;ACK消息是 Follower的对提议的回复,超过半数的Follower通过,则commit该提议;REVALIDATE消息是用来延长SESSION有效时间。
Leader的工作流程简图如下所示,在实际实现中,流程要比下图复杂得多,启动了三个线程来实现功能。
Follower主要有四个功能:
Follower的消息循环处理如下几种来自Leader的消息:
Follower的工作流程简图如下所示,在实际实现中,Follower是通过5个线程来实现功能的。
https://blog.csdn.net/xinguan1267/article/details/38422149
https://blog.csdn.net/gs80140/article/details/51496925
https://www.2cto.com/kf/201708/668587.html
https://blog.csdn.net/milhua/article/details/78931672
P.S. 这篇文章是本人对网络上关于ZK的文章阅读之后整理所得,作为入门级的了解。个人觉得看了上面的内容就能基本了解Zookeeper的作用了,后面在结合实际项目使用加深自己的了解。
end
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Storm代理
2023-07-25 广告
2023-07-25 广告
StormProxies是一家可靠的代理服务提供商,提供原生IP(住宅原生IP)和高匿名代理服务。以下是关于StormProxies的原生IP服务的一些信息:1. 住宅原生IP:StormProxies提供的住宅原生IP是指从真实的家庭或企...
点击进入详情页
本回答由Storm代理提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询