点到线的距离公式
1个回答
展开全部
点到线的距离公式如下:
设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:
定义法证明:
根据定义,点P(x_,y_)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。
设点P到直线的垂线为l',垂足为Q,则l'的斜率为B/A则l'的解析式为y-y_=(B/A)(x-x_)。
把l和l'联立得l与l'的交点Q的坐标为((B^2x_-ABy_-AC)/(A^2+B^2),(A^2y_-ABx_-BC)/(A^2+B^2))由两点间距离公式得:
PQ^2=[(B^2x_-ABy_-AC)/(A^2+B^2)-x0]^2+[(A^2y_-ABx_-BC)/(A^2+B^2)-y0]^2=[(-A^2x_-ABy_-AC)/(A^2+B^2)]^2
设直线L的方程为Ax+By+C=0,点P的坐标为(x0,y0),则点P到直线L的距离为:
定义法证明:
根据定义,点P(x_,y_)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长。
设点P到直线的垂线为l',垂足为Q,则l'的斜率为B/A则l'的解析式为y-y_=(B/A)(x-x_)。
把l和l'联立得l与l'的交点Q的坐标为((B^2x_-ABy_-AC)/(A^2+B^2),(A^2y_-ABx_-BC)/(A^2+B^2))由两点间距离公式得:
PQ^2=[(B^2x_-ABy_-AC)/(A^2+B^2)-x0]^2+[(A^2y_-ABx_-BC)/(A^2+B^2)-y0]^2=[(-A^2x_-ABy_-AC)/(A^2+B^2)]^2
上海斌瑞
2024-02-20 广告
2024-02-20 广告
半年内不要再照就没有问题,因为你已经被辐射了,但是十分钟不是特别长的时间,相当与做两三次透视吧,没有关系,不要紧张,医院大夫即使有防护措施也要不可避免的被照射呢...
点击进入详情页
本回答由上海斌瑞提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询