设f(x)在闭区间[0,1]上连续,f(0)=f(1),证明存在x0属于[0,1],使得f(x0)=f(x0+1/4) 我来答 1个回答 #热议# 为什么说不要把裤子提到肚脐眼? 户如乐9318 2022-06-22 · TA获得超过6606个赞 知道小有建树答主 回答量:2559 采纳率:100% 帮助的人:134万 我也去答题访问个人页 关注 展开全部 证明:令f(0)=f(1)=a,f(3/4)=b,F(x)=f(x)-f(x+1/4) 分情况: 1.若a=b则 x0=3/4时f(x0)=f(3/4)=f(1)=f(x0+1/4) 显然满足 2.若ab则 与2同样方法 F(0)>0,F(3/4) 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: