spark和hadoop的区别
1个回答
2022-09-20 · 百度认证:IT168官方账号,优质数码领域创作者
关注
展开全部
spark和hadoop的区别:诞生的先后顺序、计算不同、平台不同。
诞生的先后顺序,hadoop属于第一代开源大数据处理平台,而spark属于第二代。属于下一代的spark肯定在综合评价上要优于第一代的hadoop。
计算不同spark和hadoop在分布式计算的底层思路上,其实是极为相似的,即mapreduce分布式运算模型:将运算分成两个阶段,阶段1-map,负责从上游拉取数据后各自运算,然后将运算结果shuffle给下游的reduce,reduce再各自对通过shuffle读取来的数据进行聚合运算spark和hadoop在分布式计算的具体实现上,又有区别;hadoop中的mapreduce运算框架,一个运算job,进行一次map-reduce的过程;而spark的一个job中,可以将多个map-reduce过程级联进行。
平台不同spark和hadoop区别是,spark是一个运算平台,而hadoop是一个复合平台(包含运算引擎,还包含分布式文件存储系统,还包含分布式运算的资源调度系统),所以,spark跟hadoop来比较的话,主要是比运算这一块大数据技术发展到目前这个阶段,hadoop主要是它的运算部分日渐式微,而spark目前如日中天,相关技术需求量大,offer好拿。
诞生的先后顺序,hadoop属于第一代开源大数据处理平台,而spark属于第二代。属于下一代的spark肯定在综合评价上要优于第一代的hadoop。
计算不同spark和hadoop在分布式计算的底层思路上,其实是极为相似的,即mapreduce分布式运算模型:将运算分成两个阶段,阶段1-map,负责从上游拉取数据后各自运算,然后将运算结果shuffle给下游的reduce,reduce再各自对通过shuffle读取来的数据进行聚合运算spark和hadoop在分布式计算的具体实现上,又有区别;hadoop中的mapreduce运算框架,一个运算job,进行一次map-reduce的过程;而spark的一个job中,可以将多个map-reduce过程级联进行。
平台不同spark和hadoop区别是,spark是一个运算平台,而hadoop是一个复合平台(包含运算引擎,还包含分布式文件存储系统,还包含分布式运算的资源调度系统),所以,spark跟hadoop来比较的话,主要是比运算这一块大数据技术发展到目前这个阶段,hadoop主要是它的运算部分日渐式微,而spark目前如日中天,相关技术需求量大,offer好拿。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询