y'是y对某个变量求导,dy是y的微分。
比如y对x求导,y'=dy/dx,dy=y'dx。导数的本质就是变化率的极限,也就是Δx和Δy都趋于无穷小时的比值。y'是一种简写,y可能是关于x的函数,也可能是关于t的函数,但省略了写出自变量。
推导
设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。
AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。