求证:tan是三角函数

 我来答
开心的壹家人
高能答主

2022-07-03 · 最想被夸「你懂的真多」
知道大有可为答主
回答量:1.5万
采纳率:92%
帮助的人:497万
展开全部

应该说的是tan三角函数公式及度数公式

1.关于tan公式
tanα·cotα=1

sinα/cosα=tanα=secα/cscα

1+tan^2(α)=sec^2(α)

tanα=2tan(α/2)/[1-tan^2(α/2)]

tan(2α)=2tanα/[1-tan^2(α)]

tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

tanα+tanβ=sin(α+β)/cosαcosβ=tan(α+β)(1-tanαtanβ)

tanα-tanβ=sin(α-β)/cosαcosβ=tan(α-β)(1+tanαtanβ)

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)

tan3α=tanα·tan(π/3+α)·tan(π/3-α)

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1tan度数公式
1.tan30=√3/3

2.tan45=1

3.tan60=√3

2正切定义
正切函数是角θ在任意直角三角形中,与θ相对应的对边与邻边的比值叫做正切。

若将θ放在直角坐标系中即tanθ=y/x。tanA=∠A的对边/∠A对边的邻边。在直角坐标系中相当于直线的斜率k。

拓展资料

三角公式

一、倍角公式

1、Sin2A=2SinA*CosA

2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )

二、降幂公式

1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2

2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2

3、tan^2(α)=(1-cos(2α))/(1+cos(2α))

三、推导公式

1、1tanα+cotα=2/sin2α

2、tanα-cotα=-2cot2α

3、1+cos2α=2cos^2α

4、、4-cos2α=2sin^2α

5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina

四、两角和差

1、1cos(α+β)=cosα·cosβ-sinα·sinβ

2、cos(α-β)=cosα·cosβ+sinα·sinβ

3、sin(α±β)=sinα·cosβ±cosα·sinβ

4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

五、和差化积

1、sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

2、sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

3、cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

4、cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

六、积化和差

1、sinαsinβ = [cos(α-β)-cos(α+β)] /2

2、sinαcosβ = [sin(α+β)+sin(α-β)]/2

3、cosαsinβ = [sin(α+β)-sin(α-β)]/2

七、诱导公式

1、(-α) = -sinα、cos(-α) = cosα

2、tan (—a)=-tanα、sin(π/2-α) = cosα、cos(π/2-α) = sinα、sin(π/2+α) = cosα

3、3cos(π/2+α) = -sinα

4、(π-α) = sinα、cos(π-α) = -cosα

5、5tanA= sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα

6、tan(π-α)=-tanα、tan(π+α)=tanα

八、锐角三角函数公式

1、sin α=∠α的对边 / 斜边

2、α=∠α的邻边 / 斜边

3、tan α=∠α的对边 / ∠α的邻边

4、cot α=∠α的邻边 / ∠α的对边

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式