已知a、b属于正实数且a+b-ab+3=0,则ab的取值范围 急!

 我来答
科创17
2022-05-27 · TA获得超过5906个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:175万
展开全部
a、b属于正实数,所以 a^2+b^2>=2ab,因为ab+3=a+b,所以(ab-3)^2=(a+b)^2=a^2+b^2+2ab>=4ab,即(ab-3)^2-4ab>=0,得到 (ab)^2-10ab+9>=0,即(ab-9)(ab-1)>=0,所以ab=9,又因为ab>0且ab=a+b+3>3,所以ab的取值范围是(9...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式