
微分方程y'=e^(2x-y)通解
1个回答
展开全部
y(x) = ln((1/2)*exp(2*x)+C)
方程写成 exp(y)dy=exp(2x)dx
于是 d exp(y)=(1/2)* d exp(2x)
于是 exp(y) == (1/2)*exp(2x)+C
于是得到通解 y(x) = ln((1/2)*exp(2*x)+C)
方程写成 exp(y)dy=exp(2x)dx
于是 d exp(y)=(1/2)* d exp(2x)
于是 exp(y) == (1/2)*exp(2x)+C
于是得到通解 y(x) = ln((1/2)*exp(2*x)+C)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2025-02-21 广告
你说的应该是电气智能工程师,共三级两个方向。 内容简介住房和城乡建设部颁发的《建筑工程设计文件编制深度规定》(2008)为依据,从大量的工程设计实例中精选出20个工程实例,按照建筑电气专业在方案设计、初步设计、施工图设计三个不同阶段的设计深...
点击进入详情页
本回答由米尔法提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |