计算立体的体积,其中立体由旋转抛物面z=x^2+y^2与平面2x-2y-z=1围成

 我来答
户如乐9318
2022-05-23 · TA获得超过6627个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:136万
展开全部
换算成柱坐标方程
抛物面z=x^2+y^2为z=ρ^2;
平面2x-2y-z=1为 z=2ρ(cosθ +sinθ)-1
它们的交线为
ρ^2=2ρ(cosθ +sinθ)-1
→cosθ +sinθ=(1/2)(ρ+1/ρ)
ρ=(cosθ +sinθ)±2√sin2θ
则体积为
V=∫(0,2π)dθ ∫(0,ρ) ρ·|ρ^2 -[2ρ(cosθ +sinθ)-1]|dρ
=∫(0,2π)dθ ∫(0,ρ) ρ·[ρ^2 -2ρ(cosθ +sinθ)+1]dρ
=∫(0,2π)dθ ∫(0,ρ) ρ·[ρ^2 -2ρ(cosθ +sinθ)+1]dρ
=∫(0,2π) (1/4)ρ^4 +(1/2)ρ^2 -(2/3)ρ^3·(cosθ +sinθ) dθ
=∫(0,2π) (1/4)ρ^4 +(1/2)ρ^2 -(1/3)ρ^3·(ρ+1/ρ) dθ
=∫(0,2π) (-1/12)ρ^4 +(1/6)ρ^2 dθ
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式