计算立体的体积,其中立体由旋转抛物面z=x^2+y^2与平面2x-2y-z=1围成
1个回答
展开全部
换算成柱坐标方程
抛物面z=x^2+y^2为z=ρ^2;
平面2x-2y-z=1为 z=2ρ(cosθ +sinθ)-1
它们的交线为
ρ^2=2ρ(cosθ +sinθ)-1
→cosθ +sinθ=(1/2)(ρ+1/ρ)
ρ=(cosθ +sinθ)±2√sin2θ
则体积为
V=∫(0,2π)dθ ∫(0,ρ) ρ·|ρ^2 -[2ρ(cosθ +sinθ)-1]|dρ
=∫(0,2π)dθ ∫(0,ρ) ρ·[ρ^2 -2ρ(cosθ +sinθ)+1]dρ
=∫(0,2π)dθ ∫(0,ρ) ρ·[ρ^2 -2ρ(cosθ +sinθ)+1]dρ
=∫(0,2π) (1/4)ρ^4 +(1/2)ρ^2 -(2/3)ρ^3·(cosθ +sinθ) dθ
=∫(0,2π) (1/4)ρ^4 +(1/2)ρ^2 -(1/3)ρ^3·(ρ+1/ρ) dθ
=∫(0,2π) (-1/12)ρ^4 +(1/6)ρ^2 dθ
抛物面z=x^2+y^2为z=ρ^2;
平面2x-2y-z=1为 z=2ρ(cosθ +sinθ)-1
它们的交线为
ρ^2=2ρ(cosθ +sinθ)-1
→cosθ +sinθ=(1/2)(ρ+1/ρ)
ρ=(cosθ +sinθ)±2√sin2θ
则体积为
V=∫(0,2π)dθ ∫(0,ρ) ρ·|ρ^2 -[2ρ(cosθ +sinθ)-1]|dρ
=∫(0,2π)dθ ∫(0,ρ) ρ·[ρ^2 -2ρ(cosθ +sinθ)+1]dρ
=∫(0,2π)dθ ∫(0,ρ) ρ·[ρ^2 -2ρ(cosθ +sinθ)+1]dρ
=∫(0,2π) (1/4)ρ^4 +(1/2)ρ^2 -(2/3)ρ^3·(cosθ +sinθ) dθ
=∫(0,2π) (1/4)ρ^4 +(1/2)ρ^2 -(1/3)ρ^3·(ρ+1/ρ) dθ
=∫(0,2π) (-1/12)ρ^4 +(1/6)ρ^2 dθ
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询