由题意得:角ABC=ACB=80,角DAC=DCA=20,AD=CD;角CBE=CEB=50,BC=CE;
做CF=CB交AB于F,即BCF=20°;连接EF;
则有BC=CF=CE,角FCE=80-20=60,即CEF是等边三角形;
角FCD=ACB-ACD-BCF=80-20-20=40;
角FDC=180-ABC-BCD=180-80-60=40;
即角FCD=FDC;可得DF=CF=EF,即FDE是等腰三角形;
角DFE=180-EFC-CFB=180-60-80=40;
则角FDE=70,角DBE=80-50=30,则角BED=180-70-30=80