学高中数学的立体几何很吃力,怎么提高空间想象能力?
对于高中数学来说,立体几何并不少见,考试也是保证不丢分的一部分。解决问题的方法有两种,几何和向量。几何,这需要更多的练习,他们应该有空间想象力,必须非常熟悉点、线、表面之间的关系,记住那些定理,并能熟练地应用。再次强调,你必须多练习。
向量法,可以说用这种方法不怎么动脑筋,在确定零点建立坐标系时多考虑,看看哪里更容易计算,一般有规律,自己做问题总结。向量法需要注意的是要小心,多么小心并不过分。近年来,高考立体几何的难度逐渐增加。从原来的法向量方法到演绎法和法向量方法相结合的趋势进行调查。从试题的类型来看,有三个角度:选择和填充的最后一道题、大题的体积分布和两个距离。近年来,高考立体几何的难度稳步增加!
动态最值问题是近年来的一个热点。自2017年以来,这个问题的检查逐渐加强。在解决问题的方法中,我们不仅要注意空间几何的搜索,还要结合函数最值的问题来解决,这相对困难。要学好立体几何,首先要记住公式定理,掌握高考大题作为辅助线,公式判断与性质转化计算三个步骤,共同完成大题的顺利征服。做题时要注意几何体外接球的快速求法。几何体外接球问题分为六类,2019年全国一卷选择最后一道题就是这类问题。
近年来,三维问题的趋势加剧了对二面角的调查,即注意锐角和钝角的区别,这是方向量解方法很容易划分的地方。掌握简单的几何和简单的旋转体,并需要锥、柱球、平台的表面积和扩展图的面积。学会线面和面面的关系。虽然这部分有很多,但让我说,其实就是书中的四个公理和三个推论。