二分查找算法实现(图解)与实例
1个回答
展开全部
当我们要从一个序列中查找一个元素的时候,二分查找是一种非常快速的查找算法,二分查找又叫折半查找。
它对要查找的序列有两个要求,一是该序列必须是有序的(即该序列中的所有元素都是按照大小关系排好序的,升序和降序都可以,本文假设是升序排列的),二是该序列必须是顺序存储的。
如果一个序列是无序的或者是链表,那么该序列就不能进行二分查找。之所以被查找的序列要满足这样的条件,是由二分查找算法的原理决定的。
二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。
二分查找能应用于任何类型的数据,只要能将这些数据按照某种规则进行排序。然而,正因为它依赖于一个有序的集合,这使得它在处理那些频繁插入和删除操作的数据集时不太高效。这是因为,对于插入和操作来说,为了保证查找过程正常进行,必须保证数据集始终有序。相对于查找来说,维护一个有序数据集的代价更高。此外,元素必须存储在连续的空间中。因此,当待搜索的集合是相对静态的数据集时,此时使用二分查找是最好的选择。
二分查找算法的原理如下:
二分查找之所以快速,是因为它在匹配不成功的时候,每次都能排除剩余元素中一半的元素。因此可能包含目标元素的有效范围就收缩得很快,而不像顺序查找那样,每次仅能排除一个元素。
二分查找法实质上是不断地将有序数据集进行对半分割,并检查每个分区的中间元素。
此实现过程的实施是通过变量left和right控制一个循环来查找元素(其中left和right是正在查找的数据集的两个边界值)。
二分查找的时间复杂度取决于查找过程中分区数可能的最大值。对于一个有n个元素的数据集来说,最多可以进行O(㏒₂n)次分区。对于二分查找,这表示最终可能在最坏的情况下执行的检查的次数:例如,在没有找到目标时。所以二分查找的时间复杂度为O(㏒₂n)。
参考:
https://www.html.cn/qa/other/23018.html
https://www.cnblogs.com/idreamo/p/9000762.html
它对要查找的序列有两个要求,一是该序列必须是有序的(即该序列中的所有元素都是按照大小关系排好序的,升序和降序都可以,本文假设是升序排列的),二是该序列必须是顺序存储的。
如果一个序列是无序的或者是链表,那么该序列就不能进行二分查找。之所以被查找的序列要满足这样的条件,是由二分查找算法的原理决定的。
二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。
二分查找能应用于任何类型的数据,只要能将这些数据按照某种规则进行排序。然而,正因为它依赖于一个有序的集合,这使得它在处理那些频繁插入和删除操作的数据集时不太高效。这是因为,对于插入和操作来说,为了保证查找过程正常进行,必须保证数据集始终有序。相对于查找来说,维护一个有序数据集的代价更高。此外,元素必须存储在连续的空间中。因此,当待搜索的集合是相对静态的数据集时,此时使用二分查找是最好的选择。
二分查找算法的原理如下:
二分查找之所以快速,是因为它在匹配不成功的时候,每次都能排除剩余元素中一半的元素。因此可能包含目标元素的有效范围就收缩得很快,而不像顺序查找那样,每次仅能排除一个元素。
二分查找法实质上是不断地将有序数据集进行对半分割,并检查每个分区的中间元素。
此实现过程的实施是通过变量left和right控制一个循环来查找元素(其中left和right是正在查找的数据集的两个边界值)。
二分查找的时间复杂度取决于查找过程中分区数可能的最大值。对于一个有n个元素的数据集来说,最多可以进行O(㏒₂n)次分区。对于二分查找,这表示最终可能在最坏的情况下执行的检查的次数:例如,在没有找到目标时。所以二分查找的时间复杂度为O(㏒₂n)。
参考:
https://www.html.cn/qa/other/23018.html
https://www.cnblogs.com/idreamo/p/9000762.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询