七年级数学下二元一次方程组的解法训练题
类型1 用代入法解二元一次方程组
1.解方程组:a=2b+8,①a=-b-1.②
解:把①代入②,得2b+8=-b-1,解得b=-3.
把b=-3代入②,得a=-(-3)-1=2.
∴这个方程组的解是a=2,b=-3.
2.解方程组:y=2x,①3y+2x=8.②
解:把①代入②,得6x+2x=8,解得x=1.
把x=1代入①,得y=2.
∴原方程组的解是x=1,y=2.
3.解方程组:2x+y=3,①3x-5y=11.②
解:由①,得,y=3-2x.③
把③代入②,得3x-5(3-2x)=11.解得x=2.
将x=2代入①,得y=-1.
∴原方程组的解为x=2,y=-1.
4.解方程组:3m-2n=-13,①5m+8n=1.②
解:由①,得2n=3m+13.③
把③代入②,得
5m+4(3m+13)=1.解得m=-3.
把m=-3代入③,得
2n=3×(-3)+13.解得n=2.
∴原方程组的解是m=-3,n=2.
类型2 用加减法解二元一次方程组
5.(东营中考)解方程组:x+y=6,①2x-y=9.②
解:①+②,得3x=15.∴x=5.
将x=5代入①,得5+y=6.∴y=1.
∴原方程组的解为x=5,y=1.
6.(宿迁中考)解方程组:x-2y=3,①3x+4y=-1.②
解:①×2+②,得5x=5.解得x=1.
把x=1代入①,得y=-1.
∴原方程组的解为x=1,y=-1.
7.解方程组:x+0.4y=40,①0.5x+0.7y=35.②
解:①×0.5,得0.5x+0.2y=20.③
②-③,得0.5y=15.解得y=30.
把y=30代入①,得
x+0.4×30=40.解得x=28.
∴原方程组的解为x=28,y=30.
8.解方程组:5x+4y=6,①2x+3y=1.②
解:①×2,得10x+8y=12.③
②×5,得10x+15y=5.④
④-③,得7y=-7.解得y=-1.
把y=-1代入②,得
2x+3×(-1)=1.解得x=2.
∴原方程组的解为x=2,y=-1.
类型3 选择适当的方法解二元一次方程组
9.解方程组:x=y-52,①4x+3y=65.②
解:把①代入②,得4×y-52+3y=65.
解得y=15.
把y=15代入①,得x=15-52=5.
∴原方程组的解为x=5,y=15.
10.解方程组:3x+5y=19,①8x-3y=67.②
解:①×3,得9x+15y=57.③
②×5,得40x-15y=335.④
③+④,得49x=392.解得x=8.
把x=8代入①,得3×8+5y=19.解得y=-1.
∴原方程组的解为x=8,y=-1.
11.解方程组:x-y2=9,①x3-y2=7.②
解:①-②,得2x3=2.解得x=3.
把x=3代入①,得3-y2=9.解得y=-12.
∴原方程组的解为x=3,y=-12.
12.解方程组:x2=y3,①3x+4y=18.②
解:由①,得x=2y3.③
把③代入②,得2y+4y=18.解得y=3.
把y=3代入③,得x=2×33=2.
∴原方程组的解为x=2,y=3.
13.解方程组:x4+y3=13,3(x-4)=4(y+2).
解:整理,得3x+4y=4,①3x-4y=20.②
①+②,得6x=24.解得x=4.
把x=4代入①,得3×4+4y=4.解得y=-2.
∴原方程组的解为x=4,y=-2.
14.解方程组:x+2y+12=4(x-1),3x-2(2y+1)=4.
解:整理,得6x-2y=9,①3x-4y=6.②
①×2,得12x-4y=18.③
③-②,得x=43.
把x=43代入①,得6×43-2y=9.解得y=-12.
∴原方程组的解为x=43,y=-12.
15.(无锡中考)解方程组:2x-y=5,①x-1=12(2y-1).②
解:原方程组可化为y=2x-5,①2x-2y=1.②
将①代入②,得2x-2(2x-5)=1,解得x=92.
将x=92代入①,得y=4.
∴原方程组的解为x=92,y=4.
类型4 利用“整体代换法”解二元一次方程组
16.(珠海中考)阅读材料:善于思考的小军在解方程组2x+5y=3,①4x+11y=5②时,采用了一种“整体代换”的解法:
解:将方程②变形:4x+10y+y=5,
即2(2x+5y)+y=5,③
把方程①代入③,得2×3+y=5.∴y=-1.
把y=-1代入①,得x=4.
∴原方程组的解为x=4,y=-1.
请你解决以下问题:
(1)模仿小军的“整体代换法”解方程组:3x-2y=5,①9x-4y=19;②
(2)已知x,y满足方程组3x2-2xy+12y2=47,①2x2+xy+8y2=36,② 求x2+4y2的值.
解:(1)将方程②变形:9x-6y+2y=19,
即3(3x-2y)+2y=19,③
把方程①代入③,得3×5+2y=19.∴y=2.
把y=2代入①,得x=3.∴原方程组的解为x=3,y=2.
(2)①+②×2,得(3x2+12y2)+(4x2+16y2)=47+72,
整理得7x2+28y2=119,即7(x2+4y2)=119,
两边同时除以7,得x2+4y2=17.
【拓展】
二元一次方程组考点
1、二元一次方程
含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的.一般形式是(
2、二元一次方程的解
使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
3、二元一次方程组
两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。
4二元一次方程组的解
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
5、二元一次方正组的解法
(1)代入法(2)加减法
6、三元一次方程
把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。
7、三元一次方程组
由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。
2024-10-28 广告