求方程y=tan(x+y+1)确定的隐函数y=y(x)的二阶导数
1个回答
展开全部
两边对x求导得:
y'=[sec(x+y+1)]^2*(1+y')
得:y'=[sec(x+y+1)^2/{1-[sec(x+y+1)]^2}=-[sec(x+y+1)]^2/[tan(x+y+1)]^2=-[csc(x+y+1)]^2
再求导,得:y"=2csc(x+y+1)*csc(x+y+1)*ctg(x+y+1)*(1+y')
代入y'到上式,得:y"=2[csc(x+y+1)]^2*ctg(x+y+1)*{1-[csc(x+y+1)]^2}
=-2[csc(x+y+1)]^2*ctg(x+y+1)*[ctg(x+y+1)]^2
=-2[csc(x+y+1)]^2*[ctg(x+y+1)]^3
y'=[sec(x+y+1)]^2*(1+y')
得:y'=[sec(x+y+1)^2/{1-[sec(x+y+1)]^2}=-[sec(x+y+1)]^2/[tan(x+y+1)]^2=-[csc(x+y+1)]^2
再求导,得:y"=2csc(x+y+1)*csc(x+y+1)*ctg(x+y+1)*(1+y')
代入y'到上式,得:y"=2[csc(x+y+1)]^2*ctg(x+y+1)*{1-[csc(x+y+1)]^2}
=-2[csc(x+y+1)]^2*ctg(x+y+1)*[ctg(x+y+1)]^2
=-2[csc(x+y+1)]^2*[ctg(x+y+1)]^3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询