含有数字6的且能被3整除的五位数一共有多少个?请写出计算过程,

 我来答
游戏王17
2022-05-26 · TA获得超过889个赞
知道小有建树答主
回答量:214
采纳率:0%
帮助的人:63.8万
展开全部
由10000至99999这90000个五位数中,共有30000个能被3整除的数.逐位讨论数字可能的情况:在最高位上,不能为0和6,因此有8种可能情况.在千、百、十位上不能为6,各有9种可能情况,在个位上,不仅不能为6,还应使整个五位数被3整除,因此,所出现的数字应与前4位数字之和被3除的余数有关:当余数为2时,个位上可为1,4,7中的一个;当余数为1时,个位上可为2,5,8中的一个;当余数为0时,个位上可以为0,3,9中的一个.总之,不论前4位数如何,个位上都有3种可能情况,所以由乘法原理知,这类五位数的个数为8×9×9×9×3=17496,因此,含数字6而又被3整除的五位数有30000-17496=12504个.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式