广义积分定义,它的发散和收敛的通俗解释
展开全部
通俗的讲,积分是指函数图形与坐标轴围成的面积.例如f(x)从a到b的积分就等于曲线f(x),直线x=a,x=b和x轴围成的图形的面积.当然,这块面积在x轴上方的部分取为正,下方取为负.
然而有时候这个面积会少一条边.比如,积分上下限a或者b二者有一个是无穷大或者两个都为无穷大.例如f(x)从a到正无穷大的积分,它表示f(x)、直线x=a、x轴围成的面积.当然,因为缺少一条边,这块面积不是封闭的,它是向x轴正方向无穷延生的.又如,虽然积分上下限为确定值,但是函数图形本身无法和直线x=a、x=b、x轴围成封闭的面积.例如f(x)=1/x从0到1的积分,表示y=1/x、x=0、x=1、x轴围成的面积.因为f(x)=1/x在0出的值为无穷大,所以这块面积也不是封闭的,它是向y轴延生的.像这种积分表示的面积无限延生的情况,称之为广义积分.
因为面积无限延生,因此有可能面积的值为无穷大,例如y=x从0到正无穷的积分表示y=x、x=0和x轴围成的面积.任何一个人都应该知道这个面积应该为无穷大.像这种积分表示的面积为无穷大的情况,称之为广义积分发散.反之如果这个面积为一个有限数值,则称之为广义积分收敛.
然而有时候这个面积会少一条边.比如,积分上下限a或者b二者有一个是无穷大或者两个都为无穷大.例如f(x)从a到正无穷大的积分,它表示f(x)、直线x=a、x轴围成的面积.当然,因为缺少一条边,这块面积不是封闭的,它是向x轴正方向无穷延生的.又如,虽然积分上下限为确定值,但是函数图形本身无法和直线x=a、x=b、x轴围成封闭的面积.例如f(x)=1/x从0到1的积分,表示y=1/x、x=0、x=1、x轴围成的面积.因为f(x)=1/x在0出的值为无穷大,所以这块面积也不是封闭的,它是向y轴延生的.像这种积分表示的面积无限延生的情况,称之为广义积分.
因为面积无限延生,因此有可能面积的值为无穷大,例如y=x从0到正无穷的积分表示y=x、x=0和x轴围成的面积.任何一个人都应该知道这个面积应该为无穷大.像这种积分表示的面积为无穷大的情况,称之为广义积分发散.反之如果这个面积为一个有限数值,则称之为广义积分收敛.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询