求函数y=√3sin2x+cos2x的最大值与最小值,并指出相应的x的取值范围.
1个回答
展开全部
y=√3sin2x+cos2x
=2(√3/2·sin2x+1/2·cos2x)
=2[sin2xcos(π/6)+cos2xsin(π/6)]
=2sin(2x+π/6).
sin(2x+π/6)=1,
即2x+π/6=2kπ+π/2
→x=kπ+π/6时,
所求最大值为:y|max=2.
sin(2x+π/6)=-1,
即2x+π/6=2kπ+3π/2
→x=kπ+2π/3时,
所求最小值为:y|min=-2.
=2(√3/2·sin2x+1/2·cos2x)
=2[sin2xcos(π/6)+cos2xsin(π/6)]
=2sin(2x+π/6).
sin(2x+π/6)=1,
即2x+π/6=2kπ+π/2
→x=kπ+π/6时,
所求最大值为:y|max=2.
sin(2x+π/6)=-1,
即2x+π/6=2kπ+3π/2
→x=kπ+2π/3时,
所求最小值为:y|min=-2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询