cosh求导
[cosh(x)] = (1/2)[(e^x) + e^(- x)] = [e^x - e^(- x)]/2 = sinh(x)
扩展资料
cosh和sinh是双曲函数,h并非自变量,所以(sinh)'=cosh,(cosh)'=sinh。
双曲函数的定义域是实数,其自bai变量的值叫做双曲角。双曲函数出现于某些重要的线性微分方程的'解中,譬如说定义悬链线和拉普拉斯方程。
y=sinh x,定义域:R,值域:R,奇函数,函数图像为过原点并且穿越Ⅰ、Ⅲ象限的严格单调递增曲线,函数图像关于原点对称。
y=cosh x,定义域:R,值域:[1,+∞),偶函数,函数图像是悬链线,最低点是(0,1),在Ⅰ象限部分是严格单调递增曲线,函数图像关于y轴对称。
y=tanh x,定义域:R,值域:(-1,1),奇函数,函数图像为过原点并且穿越Ⅰ、Ⅲ象限的严格单调递增曲线,其图像被限制在两水平渐近线y=1和y=-1之间。
y=coth x,定义域:{x|x≠0},值域:{y||y|>1},奇函数,函数图像分为两支,分别在Ⅰ、Ⅲ象限,函数在(-∞,0)和(0,+∞)分别单调递减,垂直渐近线为y轴,两水平渐近线为y=1和y=-1。
y=sech x,定义域:R,值域:(0,1],偶函数,最高点是(0,1),函数在(0,+∞)严格单调递减,(-∞,0)严格单调递增。x轴是其渐近线。
y=csch x,定义域:{x|x≠0},值域:{y|y≠0},奇函数,函数图像分为两支,分别在Ⅰ、Ⅲ象限,函数在(-∞,0)和(0,+∞)分别单调递减,垂直渐近线为y轴,两水平渐近线为x轴。