为什么函数f(x)=2x的周期是2π
2个回答
展开全部
函数周期性公式大总结:
f(x+a)=-f(x)。
那么f(x+2a)=f=-f(x+a)=-[-f(x)]=f(x)。
所以f(x)是以2a为周期的周期函数。
f(x+a)=1/f(x)。
那么f(x+2a)=f=1/f(x+a)=1/[1/f(x)]=f(x)。
所以f(x)是以2a为周期的周期函数。
f(x+a)=-1/f(x)。
那么f(x+2a)=f=-1/f(x+a)=1/[-1/f(x)]=f(x)。
所以f(x)是以2a为周期的周期函数。
周期公式
sinx的函数周期公式T=2π,sinx是正弦函数,周期是2π。
cosx的函数周期公式T=2π,cosx是余弦函数,周期2π。
tanx和cotx的函数周期公式T=π,tanx和cotx分别是正切和余切。
secx和cscx的函数周期公式T=2π,secx和cscx是正割和余割。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询