计算曲面积分?2(1?x2)dydz+8xydzdx-4xzdxdy,其中∑是曲线x=ey(0≤y≤a)绕x轴旋转而成的旋转曲面的外侧

 我来答
妖感肉灵10
2022-11-17 · TA获得超过6.4万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.4亿
展开全部

解答如图所示:

设有一曲面形构件占xOy面上的一个曲面 ,设构件的密度分布函数为ρ(x,y),设ρ(x,y)定义在L上且在L上连续,求构件的质量。

对于密度均匀的物件可以直接用ρV求得质量;对于密度不均匀的物件,就需要用到曲面积分,dm=ρ(x,y)ds;所以m=∫ρ(x,y)ds;L是积分路径,∫ρ(x,y)ds就叫做对弧长的曲面积分。

扩展资料

曲面S向相应的坐标平面投影,求得二重积分的积分区域。

根据曲面的侧(即法向量的方向)确定二重积分的符号。

根据积分表达式,确定投影平面,如要计算P(x,y,z)dydz,必须将S向yz平面投影,求

得二重积分的积分区域Dyz,此时P(x(y,z),y,z)dydz,其中曲面S:x=x(y,z),(y,z)∈Dyz,二重积分的符号取决于法向量与x正向的夹角,为锐角时取正号,钝角时取负号,为前正、后负。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式