高等数学题:limf(x)=A limg(x)=B 求证lim[f(x)g(x)]=limf(x)limg(x)
1个回答
展开全部
因为limf(x)=A limg(x)=B
所以对任意e>0,存在正数X,使得x>X时,有|f(x)-A|X时,有
|f(x)g(x)-AB|
=|f(x)g(x)-f(x)B+f(x)B-AB|
=|f(x)[g(x)-B]+B[f(x)-A]|
所以对任意e>0,存在正数X,使得x>X时,有|f(x)-A|X时,有
|f(x)g(x)-AB|
=|f(x)g(x)-f(x)B+f(x)B-AB|
=|f(x)[g(x)-B]+B[f(x)-A]|
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询