y=cos(πx-π/2)的周期怎么求
1个回答
展开全部
不是周期函数。
证明:
令f(x)=xcosx
用反证法证明
假设f(x)是周期函数,且T>0是f(x)的周期
则对任意的实数x,有f(x)=f(x+T),即(x+T)cos(x+T)=xcosx
取x=0,得TcosT=0,于是有cosT=0.........(1)
又取x=2π,有(2π+T)cos(2π+T)=2πcos2π,于是有2π=(2π+T)cosT....(2)
∵由(1)式得cosT=0,代入(2)式得,2π=(2π+T)cosT=0,矛盾
∴假设不成立,即f(x)=xcosx不是周期函数。
证明:
令f(x)=xcosx
用反证法证明
假设f(x)是周期函数,且T>0是f(x)的周期
则对任意的实数x,有f(x)=f(x+T),即(x+T)cos(x+T)=xcosx
取x=0,得TcosT=0,于是有cosT=0.........(1)
又取x=2π,有(2π+T)cos(2π+T)=2πcos2π,于是有2π=(2π+T)cosT....(2)
∵由(1)式得cosT=0,代入(2)式得,2π=(2π+T)cosT=0,矛盾
∴假设不成立,即f(x)=xcosx不是周期函数。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询