这道定积分怎么解 ∫(x+sinx)/(1+cosx)dx 积分限为[0,π/2]
展开全部
原式=∫x/(1+cosX)dx+∫sinX/(1+cosX)dx
=∫xsec^2(x/2)d(x/2)-∫1/(1+cosx)d(1+cosx)
=∫xd[tan(x/2)]-ln(1+cosx)
=xtan(x/2)-∫tan(x/2)dx-ln(1+cosx)
=xtan(x/2)+2ln∣cos(x/2)∣-ln2-ln∣cos(x/2)∣+C1
=xtan(x/2)+C
=∫xsec^2(x/2)d(x/2)-∫1/(1+cosx)d(1+cosx)
=∫xd[tan(x/2)]-ln(1+cosx)
=xtan(x/2)-∫tan(x/2)dx-ln(1+cosx)
=xtan(x/2)+2ln∣cos(x/2)∣-ln2-ln∣cos(x/2)∣+C1
=xtan(x/2)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询