在△ABC中,AC=5,AB=13,BC=12,D是BC的中点,求AD的长和△ABD的面积
1个回答
展开全部
解
因为 AC^2+BC^=25+144=169=13^2=AB^2
所以 三角形ABC是直角三角形
因为 D是BC的中点
所以 CD=6
所以 AD^2=25+36
AD=根号下61
三角形abd的面积=三角形abc-三角形acd=(5*12-5*6)/2=15 下面的别抄袭我!
因为 AC^2+BC^=25+144=169=13^2=AB^2
所以 三角形ABC是直角三角形
因为 D是BC的中点
所以 CD=6
所以 AD^2=25+36
AD=根号下61
三角形abd的面积=三角形abc-三角形acd=(5*12-5*6)/2=15 下面的别抄袭我!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
GamryRaman
2023-06-12 广告
2023-06-12 广告
N沟道耗尽型MOS管工作在恒流区时,g极与d极之间的电位有固定的大小关系。这是因为当MOS管工作在恒流区时,由于源极和漏极电压相等,G极电压(即源极电压)为0,而D极电压(即漏极电压)受栅极电压控制。由于G极电压为0,因此在恒流区时,D极电...
点击进入详情页
本回答由GamryRaman提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询