泊松分布什么意思?
泊松分布公式:
随机变量X的概率分布为:P{X=k}=λ^k/(k!e^λ) k=0,1,2...
则称X服从参数为λ(λ>0)的泊松分布,k代表的是变量的值,且是自然数。泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。
泊松分布应用:
在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等。
以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。
因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位。(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性。
扩展资料:
泊松分布
1、泊松分布,它作为了排队论的一个输入。比如在一段时间t(比如 1 个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200 人),
2、应该符合某种随机规律:假如在 1 个小时内来 200 个学生的概率是10%,来 180 个学生的概率是 20%一般认为,这种随机规律服从的就是泊松分布。这当然只是形象化的理解什么是泊松分布,若要公式化定义,那就是:若随机变量X 只取非负整数值0,1,2。
3、概率分布服从则随机变量X 的分布称为泊松分布,记作P(λ)。这个分布是S.-D.泊松研究二项分布的渐近公式时提出来的。泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差。
参考资料:百度百科-泊松分布