证明f(x)在[a,b]连续,(a,b)二阶可导,f(a)=f(b)=0,f(c)>0知a

 我来答
天罗网17
2022-05-26 · TA获得超过6171个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:72万
展开全部
连续应用中值定理!
根据拉格朗日中值定理:
在(a,c)之间必存在一点u,使得:f'(u)= [f(c)-f(a)]/(c-a)= f(c)/(c-a)>0
在(c,b)之间必存在一点v,使得:f'(v)= [f(b)-f(c)]/(b-c)= -f(c)/(b-c)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式