相似矩阵的矩阵性质

 我来答
刺任芹O
2022-11-17 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:8625万
展开全部

设A,B和C是任意同阶方阵,则有: A~ A ;若A~ B,则 B~ A;若A~ B,B~ C,则A~ C;若A~ B,则r(A)=r(B),|A|=|B|(5) 若A~ B,且A可逆,则B也可逆,且B~ A。 若A~ B,则A与B有相同的特征方程,有相同的特征值。

若A与对角矩阵相似,则称A为可对角化矩阵,若n阶方阵A有n个线性无关的特征向量,则称A为单纯矩阵。

相似矩阵具有相同的可逆性,当它们可逆时,则它们的逆矩阵也相似。

扩展资料:

n阶矩阵A与对角矩阵相似的充分必要条件为矩阵A有n个线性无关的特征向量。

注: 定理的证明过程实际上已经给出了把方阵对角化的方法。

若矩阵可对角化,则可按下列步骤来实现:

1、求出全部的特征值;

2、对每一个特征值,设其重数为k,则对应齐次方程组的基础解系由k个向量构成,即为对应的线性无关的特征向量;

3、上面求出的特征向量恰好为矩阵的各个线性无关的特征向量。

矩阵的概念最早在1922年见于中文。1922年,程廷熙在一篇介绍文章中将矩阵译为“纵横阵”。1925年,科学名词审查会算学名词审查组在《科学》第十卷第四期刊登的审定名词表中,矩阵被翻译为“矩阵式”,方块矩阵翻译为“方阵式”,而各类矩阵如“正交矩阵”、“伴随矩阵”中的“矩阵”则被翻译为“方阵”。

1935年,中国数学会审查后,中华民国教育部审定的《数学名词》(并“通令全国各院校一律遵用,以昭划一”)中,“矩阵”作为译名首次出现。

1938年,曹惠群在接受科学名词审查会委托就数学名词加以校订的《算学名词汇编》中,认为应当的译名是“长方阵”。中华人民共和国成立后编订的《数学名词》中,则将译名定为“(矩)阵”。1993年,中国自然科学名词审定委员会公布的《数学名词》中,“矩阵”被定为正式译名,并沿用至今。

矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。

日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。

参考资料来源:百度百科——相似矩阵

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式