高中数学题(古典概型)

从0到9中任取三个数字组成一个不重复的三位数,这个数不能被3整除的概率为多大?除了穷举…我就不会别的了,要简单方法... 从0到9中任取三个数字组成一个不重复的三位数,这个数不能被3整除的概率为多大?除了穷举…我就不会别的了,要简单方法 展开
 我来答
咪悠咪悠
2010-12-21 · 超过31用户采纳过TA的回答
知道答主
回答量:59
采纳率:0%
帮助的人:70.7万
展开全部
从0到9这十个数字中任取3个数字组成一个没有重复的三位数
共可组成 9*9*8 = 648 个。(注 百位数字不可以是0)

然后把 1-9 分成3组
A: 1 4 7
B: 2 5 8
C: 3 6 9

首先计算由这9个数组成的可以被3 整除的数 有多少个。

A组的三个数字任意排列可以组成被3 整除的数字。
共有 P(3,3) = 3*2*1 = 6
同理 B和C组也可各构成6个数字能被3整除。
以上共计 18个数字 可以被3 整除。

从A、B、C组中任意选1个数字,由这3个数字均可构成被3整除的数
共有 C(3,1)*C(3,1)*C(3,1)*P(3,3) = 3*3*3 * 3*2*1 = 162个

以上合计 共有 18+162=180个数字可被3整除。

下面再考虑含有0的三位数。
在C组中任意选出2个数字,均可与0构成 能被3整除的三位数
共有 C(3,2)*[P(3,3)-P(2,2)]=3*(3*2*1 - 2*1)= 12 个
它们分别是 306 309 360 390 603 609 630 690 903 906 930 960
C(3,2)表示从 3 6 9 共3个数字中抽取2个数字的方法数
P(3,3)表示 0 与上面抽出的2个数字 共3个数字 进行排列的种类数
P(2,2)表示 在上面的排列中,0 被排在百位情况下的种类数。

A、B组中任意选一个,均可以与0构成能被3整除的三位数字
共有 C(3,1)*C(3,1)*[P(3,3)-P(2,2)] = 3*3 *(3*2*1-2*1)= 36个。

以上合计 180+12+36=228。即 648个数字中有228个数可以被3整除。不能被3整除的数字的个数是 648-228 = 420。

因此所求概率为:420/648 = 35/54
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式