证明ln(x+1)~x(x趋于0)
1个回答
展开全部
证明:因为 lim (x→0) ln (x+1) = ln (0+1) =0,
lim (x→0) x =0,
且 lim (x→0) [ ln (x+1) ] /x
= lim (x→0) ln [ (x+1)^(1/x) ]
= ln e
= 1,
所以 ln (x+1) x.
= = = = = = = = =
重要极限:
lim (t→∞) (1+ 1/t)^t =e,
令 x =1/t,等价于
lim (x→0) (1 +x) ^(1/x) =e.
lim (x→0) x =0,
且 lim (x→0) [ ln (x+1) ] /x
= lim (x→0) ln [ (x+1)^(1/x) ]
= ln e
= 1,
所以 ln (x+1) x.
= = = = = = = = =
重要极限:
lim (t→∞) (1+ 1/t)^t =e,
令 x =1/t,等价于
lim (x→0) (1 +x) ^(1/x) =e.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询