求不定积分: ∫(x+3)/(x^2-5x+6)dx=
展开全部
∫(x+3)/(x²-5x+6)dx
= ∫(x+3)[(x-2)-(x-3)]/[(x-3)(x-2)]dx
= ∫(x+3)[1/(x-3)-1/(x-2)]dx
= ∫[6/(x-3)-5/(x-2)]dx
= 6ln(x-3)-5ln(x-2)+C
= ∫(x+3)[(x-2)-(x-3)]/[(x-3)(x-2)]dx
= ∫(x+3)[1/(x-3)-1/(x-2)]dx
= ∫[6/(x-3)-5/(x-2)]dx
= 6ln(x-3)-5ln(x-2)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询