
矩阵的相似,合同,等价是怎么定义的
1个回答
展开全部
矩阵相似:在线性代数中,相似矩阵是指存在相似关系的矩阵。设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)AP=B,则称矩阵A与B相似,记为A~B。
矩阵合同:在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵 C,使得C^TAC=B,则称方阵A合同于矩阵B。
矩阵等价:在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。
扩展资料:
相似矩阵的性质:
(1)反身性:A~ A。
(2)对称性:若A~ B,则 B~ A。
(3)传递性:若A~ B,B~ C,则A~ C。
(4)若A~ B,则r(A)=r(B),|A|=|B|,tr(A)=tr(B)。
(5)若A~ B,且A可逆,则B也可逆,且B~ A。
(6)若A~ B,则A与B。
参考资料来源:百度百科-等价矩阵
参考资料来源:百度百科-相似矩阵
参考资料来源:百度百科-合同矩阵
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询