如图5,圆O是三角形AOB的外接圆,AB为直径,角ABC的平分线交圆O与点D,?
1个回答
展开全部
证明:(1)连接OD,
∵EF是⊙O的切线,
∴OD⊥EF,
∵AD平分∠BAC,
∴∠CAD=∠BAD,
∴弧CD=弧BD
∴OD⊥BC,
∴BC∥EF,
∵AB为直径,
∴∠ACB=90°,
即AC⊥BC,
∴AF⊥EF;
(2)连接BD并延长,交AF的延长线于点H,连接CD,
∵AB是直径,
∴∠ADB=90°,
即AD⊥BH,
∴∠ADB=∠ADH=90°,
在△ABD和△ADH中,
∠HAD=∠BAD
AD=AD
∠ADH=∠ADBx09 ,
∴△ABD≌△AHD(ASA),
∴AH=AB,
∵EF是切线,
∴∠CDF=∠CAD,∠HDF=∠EDB=∠BAD,
∴∠CDF=∠HDF,
∵DF⊥AF,DF是公共边,
∴△CDF≌△HDF(ASA),
∴FH=CF,
∴AF+CF=AF+FH=AH=AB.
即AF+CF=AB,,1,如图5,圆O是三角形AOB的外接圆,AB为直径,角ABC的平分线交圆O与点D,
过点D的切线分别交AB,AC的延长线与点E,F
证AF垂直于EF AF+CF=AB
∵EF是⊙O的切线,
∴OD⊥EF,
∵AD平分∠BAC,
∴∠CAD=∠BAD,
∴弧CD=弧BD
∴OD⊥BC,
∴BC∥EF,
∵AB为直径,
∴∠ACB=90°,
即AC⊥BC,
∴AF⊥EF;
(2)连接BD并延长,交AF的延长线于点H,连接CD,
∵AB是直径,
∴∠ADB=90°,
即AD⊥BH,
∴∠ADB=∠ADH=90°,
在△ABD和△ADH中,
∠HAD=∠BAD
AD=AD
∠ADH=∠ADBx09 ,
∴△ABD≌△AHD(ASA),
∴AH=AB,
∵EF是切线,
∴∠CDF=∠CAD,∠HDF=∠EDB=∠BAD,
∴∠CDF=∠HDF,
∵DF⊥AF,DF是公共边,
∴△CDF≌△HDF(ASA),
∴FH=CF,
∴AF+CF=AF+FH=AH=AB.
即AF+CF=AB,,1,如图5,圆O是三角形AOB的外接圆,AB为直径,角ABC的平分线交圆O与点D,
过点D的切线分别交AB,AC的延长线与点E,F
证AF垂直于EF AF+CF=AB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询