换元法主要适用于计算什么样的不定积分?

 我来答
小小芝麻大大梦
高粉答主

2022-10-12 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:978万
展开全部

一般可以凑微分的时候用第一类换元法,碰到根号如根号下a²-x²之类的令x为asint可消掉根号,为第二类换元法,分部积分在这两类都不解决问题时再用。

换元积分法是求积分的一种方法。它是由链式法则和微积分基本定理推导而来的。在计算函数导数时.复合函数是最常用的法则,把它反过来求不定积分,就是引进中间变量作变量替换,把一个被积表达式变成另一个被积表达式。

从而把原来的被积表达式变成较简易的不定积分这就是换元积分法。换元积分法有两种,第一类换元积分法和第二类换元积分法。

扩展资料:

求不定积分的方法:

第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式