写出三角形面积公式的推导过程.(请画图表示,并用文字叙述 )?
1个回答
展开全部
解题思路:将两个完全一样的三角形都可以拼成一个平行四边形,计算这个平行四边形的面积的一半就可以推导出三角形面积的计算公式.
如图,将两个完全一样的三角形都可以拼成一个平行四边形,
拼成的平行四边形的面积等于这两个三角形的面积,
底等于三角形的底,高等于三角形的高,
所以一个三角形的面积=这个平行四边形的面积的一半,
因为平行四边形的面积=底×高,
三角形的面积×2=底×高,
则三角形的面积=底×高÷2,即S=ah÷2.
,10,把一个圆沿半径剪成若干等份,再让一系列圆心角互相咬合,便拼成了一个近似的长方形;而且,平分的份数越多,拼成的与长方形越近似;可以想象,若能无限分割,则就拼成了一个长方形,长相当于圆周长的一半,宽就是圆的半径,所以 S长=ab=πr*r=πr²...,2,x^2+y^2=r^2
只需算出第一象限,然后乘以4
S/4=∫(0到r)√(r^2-x^2)dx
令x=rcosa
√(r^2-x^2)=rsina
dx=-rsinada
所以S/4=∫(π/2到0)rsina*(-rsina)da
=-r^2∫(π/2到0)(sina)^2da
=-r^2∫(π/2到0)(1-cos2a)/2d...,2,圆周率被定义为圆形之周长与直径之比,它也等于圆形面积与半径平方之比。
所以周长公式来自定义,至于面积公式,需要在这个定义的基础上证明。
如果我们把圆周率定义为圆形面积与半径平方之比,那么周长公式也可以在这个定义的基础上加以证明。
所以说,从本质上讲,圆面积、周长公式是定义。...,2,S=πR²,1,因为,把一个圆沿半径剪成若干等份,再让一系列圆心角互相咬合,便拼成了一个近似的长方形;而且,平分的份数越多,拼成的与长方形越近似;可以想象,若能无限分割,则就拼成了一个长方形,长相当于圆周长的一半,宽就是圆的半径,所以 S长=a*b=πr*r=πr²
所以S圆=πr²...,1,
如图,将两个完全一样的三角形都可以拼成一个平行四边形,
拼成的平行四边形的面积等于这两个三角形的面积,
底等于三角形的底,高等于三角形的高,
所以一个三角形的面积=这个平行四边形的面积的一半,
因为平行四边形的面积=底×高,
三角形的面积×2=底×高,
则三角形的面积=底×高÷2,即S=ah÷2.
,10,把一个圆沿半径剪成若干等份,再让一系列圆心角互相咬合,便拼成了一个近似的长方形;而且,平分的份数越多,拼成的与长方形越近似;可以想象,若能无限分割,则就拼成了一个长方形,长相当于圆周长的一半,宽就是圆的半径,所以 S长=ab=πr*r=πr²...,2,x^2+y^2=r^2
只需算出第一象限,然后乘以4
S/4=∫(0到r)√(r^2-x^2)dx
令x=rcosa
√(r^2-x^2)=rsina
dx=-rsinada
所以S/4=∫(π/2到0)rsina*(-rsina)da
=-r^2∫(π/2到0)(sina)^2da
=-r^2∫(π/2到0)(1-cos2a)/2d...,2,圆周率被定义为圆形之周长与直径之比,它也等于圆形面积与半径平方之比。
所以周长公式来自定义,至于面积公式,需要在这个定义的基础上证明。
如果我们把圆周率定义为圆形面积与半径平方之比,那么周长公式也可以在这个定义的基础上加以证明。
所以说,从本质上讲,圆面积、周长公式是定义。...,2,S=πR²,1,因为,把一个圆沿半径剪成若干等份,再让一系列圆心角互相咬合,便拼成了一个近似的长方形;而且,平分的份数越多,拼成的与长方形越近似;可以想象,若能无限分割,则就拼成了一个长方形,长相当于圆周长的一半,宽就是圆的半径,所以 S长=a*b=πr*r=πr²
所以S圆=πr²...,1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询