简述采样定理及其含义
1、采样定理是指,在采样频率要大于信号最高频率的2倍,才能无失真的保留信号完整信息。
以下条件是可以保证信号的完整信息在进行模拟/数字信号的转换过程中 当采样频率fs不小于信号中最高频率fmax的2倍 即 fs>=2fmax 时 采样之后的数字信号完整地保留了原始信号中的信息。
2、采样定理(香农采样定理,奈奎斯特采样定理)是信息论,特别是通讯与信号处理学科中的一个重要基本结论.E.T.Whittaker(1915年发表的统计理论),克劳德·香农与HarryNyquist都对它作出了重要贡献。另外,V.A.Kotelnikov也对这个定理做了重要贡献。
采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。采样定理指出,如果信号是带限的,并且采样频率高于信号带宽的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。
带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是有限的。采样定理是指,如果信号带宽小于采样频率(即奈奎斯特频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。大多数应用都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。
2023-06-12 广告