二阶微分方程怎么解?
展开全部
解:只有二阶常系数线性微分方程有通解公式,其它情况下都没有。
例子:解二阶非常系数线性微分方程
解:微分方程为xy"+(x+4)y'+3y=4x+4,假设微分方程xy"+(x+4)y'+3y=0的特解为y=xʳ,将特解带入方程,有x(xʳ)"+(x+4)(xʳ)'+3xʳ=0,r(r-1)xʳ⁻¹+r(x+4)xʳ⁻¹+3xʳ=0,r(r-1)xʳ⁻¹+4rxʳ⁻¹+rxʳ+3xʳ=0,(r²+3r)+(r+3)x=0,(r+3)(r+x)=0,得:r=-3,则微分方程xy"+(x+4)y'+3y=0的特解为y=x⁻³,再设微分方程的通解为y=x⁻³u,有x(x⁻³u)"+(x+4)(x⁻³u)'+3x⁻³u=0,x(x⁻³u"-3x⁻⁴u'-3x⁻⁴u'+12x⁻⁵u)+(x+4)(x⁻³u'-3x⁻⁴u)+3x⁻³u=0,x(x⁻³u"-6x⁻⁴u'+12x⁻⁵u)+(x+4)(x⁻³u'-3x⁻⁴u)+3x⁻³u=0,x²u"-6xu'+12u+(x+4)(xu'-3u)+3xu=0,x²u"+(x²-2x)u'=0,u"×eˣ/x²+eˣ(1/x²-2/x³)u'=0,(u'eˣ/x²)'=0,u'eˣ/x²=a(a为任意常数),u'=ax²e⁻ˣ,u=-ax²e⁻ˣ-2axe⁻ˣ-2ae⁻ˣ+c(为任意常数),微分方程xy"+(x+4)y'+3y=0的通解为y=(-ax⁻¹-2ax⁻²-2ax⁻³)e⁻ˣ+cx⁻³(c为任意常数);设原微分方程的特解为y=px+q,有p(x+4)+3(px+q)=4x+4,4px+4p+3q=4x+4,有4p=4,4p+3q=4,得:p=1,q=0,微分方程的特解为y=x,通解为y=(-ax⁻¹-2ax⁻²-2ax⁻³)e⁻ˣ+cx⁻³+x
例子:解二阶非常系数线性微分方程
解:微分方程为xy"+(x+4)y'+3y=4x+4,假设微分方程xy"+(x+4)y'+3y=0的特解为y=xʳ,将特解带入方程,有x(xʳ)"+(x+4)(xʳ)'+3xʳ=0,r(r-1)xʳ⁻¹+r(x+4)xʳ⁻¹+3xʳ=0,r(r-1)xʳ⁻¹+4rxʳ⁻¹+rxʳ+3xʳ=0,(r²+3r)+(r+3)x=0,(r+3)(r+x)=0,得:r=-3,则微分方程xy"+(x+4)y'+3y=0的特解为y=x⁻³,再设微分方程的通解为y=x⁻³u,有x(x⁻³u)"+(x+4)(x⁻³u)'+3x⁻³u=0,x(x⁻³u"-3x⁻⁴u'-3x⁻⁴u'+12x⁻⁵u)+(x+4)(x⁻³u'-3x⁻⁴u)+3x⁻³u=0,x(x⁻³u"-6x⁻⁴u'+12x⁻⁵u)+(x+4)(x⁻³u'-3x⁻⁴u)+3x⁻³u=0,x²u"-6xu'+12u+(x+4)(xu'-3u)+3xu=0,x²u"+(x²-2x)u'=0,u"×eˣ/x²+eˣ(1/x²-2/x³)u'=0,(u'eˣ/x²)'=0,u'eˣ/x²=a(a为任意常数),u'=ax²e⁻ˣ,u=-ax²e⁻ˣ-2axe⁻ˣ-2ae⁻ˣ+c(为任意常数),微分方程xy"+(x+4)y'+3y=0的通解为y=(-ax⁻¹-2ax⁻²-2ax⁻³)e⁻ˣ+cx⁻³(c为任意常数);设原微分方程的特解为y=px+q,有p(x+4)+3(px+q)=4x+4,4px+4p+3q=4x+4,有4p=4,4p+3q=4,得:p=1,q=0,微分方程的特解为y=x,通解为y=(-ax⁻¹-2ax⁻²-2ax⁻³)e⁻ˣ+cx⁻³+x
展开全部
当为多项式的时候可以根据公式直接来设出特解而且这个是有固定的公式,然后根据取值把特解求出来再加上通解就可以了。
一、常用的几个:
1、Ay''+By'+Cy=e^mx
特解 y=C(x)e^mx
2、Ay''+By'+Cy=a sinx + bcosx
特解 y=msinx+nsinx
3、Ay''+By'+Cy= mx+n
特解 y=ax
二、通解
1、两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)
2、两根相等的实根:y=(C1+C2x)e^(r1x)
3、一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)
扩展资料;
在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。具有这种性质的微分方程称为可降阶的微分方程,相应的求解方法称为降阶法。下面介绍三种容易用降阶法求解的二阶微分方程。
y''=f(x)型,方程特点:右端仅含有自变量x,逐次积分即可得到通解,对二阶以上的微分方程也可类似求解。
参考资料来源:百度百科-二阶微分方程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询