对于三年级学生寒假数学辅导之应用题的注意事项
【篇一】
创设情景,创设运用直观,帮助学生全面理解题意
要让学生会做应用题,学生必须对应用题熟悉。只有让学生有了认真读题的习惯,使题目的情节、数量关系等在解题时自始自终地保持在学生地头脑中,才可能更好的解题。
利用生活中的实际例子,提高学生的兴趣,让学生掌握解题的方法。如:在教学三步计算的应用题时,我设计了这样一道应用题:同学们,老师有件事要请你帮忙,昨天,一年级的小朋友排练节目,排着排着,有几个小朋友说肚子饿了,我随手掏出18元钱,让一个小朋友去买方便面。他回来告诉我说,店老板开始只同意给12包,我说批发部里比你的便宜得多,老板说,每包再便宜0.5元,共给我17包。现在请大家帮我算算,按店老板的说法,有没有给错。如果没给足,课后请大家帮老师将少给的要回来。
板书:18元买方便面,开始店老板给12包,后来每包便宜0.5元,共给17包。
学生在发言过程中说出自己的解题思路、方法和步骤,学生在很短的时间内就掌握了三步计算的应用题。
根据应用题的情节,直接用实物演示,使学生在观察数量关系的变化中理解具体的题意。如:男生7人,女生8人,分成3组做值日,平均每组几人?可直接请7位男生和8位女生上来,自动分成3组,每组人数相等。又如:有一座大桥长1550米,一列长100米的列车以每秒15米的速度开过这座大桥,火车过桥需要多长时间?引导学生用短铅笔比作火车,铅笔盒比作大桥,自己表演一下火车是怎样过桥的。火车到什么地方才算全部过桥?这样,学生很快明白为什么要把火车自身的车长也计算进去,从而找到解题途径。
利用图解法进行演示。在学习分数、百分数应用题时,学生只要把部分与整体的关系、具体数量与比率的对应关系表示出来,应用题解答的任务便完成了一半。如:用线段图把应用题的情节、数量关系直观地显示出来,使抽象问题具体化,复杂关系明朗化,为正确解题创造条件。
【篇二】
一题多解的训练
例如结合应用题教学,我出示了这样一题:“红星小学有250生,现在要租车去游览。有两种车供选择:48座的大巴车,每辆租费480元;20座的中巴车,每辆租费220元。怎样租车才能使每个旅客都有座,又最省钱?”
解答这样的问题,一般要设计几种方案,进行比较后,再确定方案,而选择租车方案,一般应从两方面来考虑:一是尽量多租每个座位花钱少的车;二是使空座位尽量少,提高座位利用率。
我先请学生自己设计好方案,然后再进行交流,学生经过讨论,得出了以下方案:大巴车每座需:480÷48=10(元),中巴车每座需:220÷20=11(元),可见大巴车每座租费比中巴车便宜,因此,应尽量多租大巴车,少租中巴车。因为,250÷48=5(辆)……10(人),所以要租用大巴车5辆,中巴车1辆。这种租车方案有空位:20-10=10(个),租费为:480×5+220=2620(元)
以上方案只考虑了第一方面,即多租每个座位花钱少的车,而忽略了第二方面,即使空座位尽量少,提高座位利用率。这时我就启发学生在上面方案的基础上作调整适当的调整,从而得出租车方案:,少租1辆大巴车,增加2辆中巴车,即租用大巴车4辆,中巴车3辆,这样就只有空座位:48×4+20×3-250=2(个),租费为:480×4+220×3=2580(元)。这种方案,既能使每个旅客都有座位,又最省钱。
一题多变的训练
在教学实践中,我们可先给出基本条件,然后要求学生变换它的条件、问题、结构或改变叙述形式,使之成为新的题目,再引导学生把前后题目进行比较,从中找出它们之间的联系。如基本题:某校有女生400人,男生500人,这所学校中男女学生各占全校学生人数的几分之几?
1、改问题:
(1)某校有女生400人,男生500人,女生是男生的几分之几?男生是女生的几分之几?
(2)某校有女生400人,男生500人,女生比男生少几分之几?男生比女生多几分之几?
2、改条件:
(1)某校有女生400人,男生比女生多25%,全校有学生共多少人?
(2)某校有女生400人,男生与女生人数的比是5∶4,全校有学生多少人?
3、变叙述:某校有女生400人,男生占全校人数的5/9,全校有学生多少人?
条件问题互换:某校有学生900人,男生与女生人数的比是5∶4,学校男女学生各有多少人?
这种训练,学生易于理解题目之间的关系,能培养思维的流畅性和变通性。