用消元法推导3元线性方程组的克拉默法则的结论。
克莱姆法则,又译克拉默法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理。
1、当方程组的系数行列式不等于零时,则方程组有解,且具有唯一的解。
2、如果方程组无解或者有两个不同的解,那么方程组的系数行列式必定等于零。
3、克莱姆法则不仅仅适用于实数域,它在任何域上面都可以成立。
克拉默法则(Kramer's rule)是一种直接用行列式解线性方程组的方法。把线性方程组记为矩阵乘法的形式。
Ax=b(1)(1)Ax=b
其中 AA 为系数矩阵。当 AA 为 N×NN×N 的方阵且行列式 |A|≠0|A|≠0 时(即满秩矩阵),方程有唯一解(见 “线性方程组解的结构”)。该解可以用克拉默法则直接写出:
xi=|Ai||A|(i=1,…,N)(2)(2)xi=|Ai||A|(i=1,…,N)
其中 AiAi 是把 AA 的第 ii 列替换为 bb 而来。
例如:解方程组
令式 1 中 A=(21−13)A=(21−13),b=(45)b=(45),求解方程组。
解:|A|=7|A|=7,|A1|=∣∣∣4153∣∣∣=7|A1|=|4153|=7,|A2|=∣∣∣24−15∣∣∣=14|A2|=|24−15|=14。代入式 2 得 x=(12)x=(12)。
在数值计算时,克拉默法则解方程组效率较低,直接用高斯消元法求逆矩阵高斯消元法求逆矩阵会更快。
推论1)n元齐次线性方程组有惟一零解的充要条件是系数行列式不等于零,系数矩阵可逆(矩阵可逆=矩阵非奇异=矩阵对应的行列式不为0=满秩=行列向量线性无关);
2)n元齐次线性方程组有非零解的充要条件是系数行列式等于零。
xml法则总结
1.克莱姆法则的重要理论价值:
1)研究了方程组的系数与方程组解的存在性与惟一性关系;
2)与其在计算方面的做用相比,克莱姆法则更具备重大的理论价值。(通常没有计算价值,计算量较大,复杂度过高)
2.应用克莱姆法则判断具备N个方程、N个未知数的线性方程组的解:
1)当方程组的系数行列式不等于零时,则方程组有解,且具备惟一的解;
2)若是方程组无解或者有两个不一样的解,那么方程组的系数行列式一定等于零;
3)克莱姆法则不单单适用于实数域,它在任何域上面均可以成立。
2024-04-02 广告