求siin73°cos47°+sin17°cos43°的值
展开全部
首先,可以使用三角函数的乘积公式来计算该式子:
sin(a)cos(b) = (1/2)[sin(a + b) + sin(a - b)]
将sin73°cos47°和sin17°cos43°代入公式中,得到:
sin(73°)cos(47°) + sin(17°)cos(43°)
= (1/2)[sin(73° + 47°) + sin(73° - 47°)] + (1/2)[sin(17° + 43°) + sin(17° - 43°)]
= (1/2)[sin(120°) + sin(26°)] + (1/2)[sin(60°) - sin(26°)]
= (1/2)[√3/2 + sin(26°)] + (1/2)[√3/2 - sin(26°)]
= √3/2
sin(a)cos(b) = (1/2)[sin(a + b) + sin(a - b)]
将sin73°cos47°和sin17°cos43°代入公式中,得到:
sin(73°)cos(47°) + sin(17°)cos(43°)
= (1/2)[sin(73° + 47°) + sin(73° - 47°)] + (1/2)[sin(17° + 43°) + sin(17° - 43°)]
= (1/2)[sin(120°) + sin(26°)] + (1/2)[sin(60°) - sin(26°)]
= (1/2)[√3/2 + sin(26°)] + (1/2)[√3/2 - sin(26°)]
= √3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
加号后面:
sin (17) = sin (π/2 - 73) = cos(73)
cos (43) = cos (π/2 - 47) = sin(47)
所以加号后面:
= (cos(73)sin(47))
sinacosb + cosasinb = sin(a + b)
= sin(73 + 47)
= sin120°
= sin60°
= √3/2
谁采纳的?楼下正解啊!我做错了!不过我改的比楼下简单点哈
sin (17) = sin (π/2 - 73) = cos(73)
cos (43) = cos (π/2 - 47) = sin(47)
所以加号后面:
= (cos(73)sin(47))
sinacosb + cosasinb = sin(a + b)
= sin(73 + 47)
= sin120°
= sin60°
= √3/2
谁采纳的?楼下正解啊!我做错了!不过我改的比楼下简单点哈
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询