5的相反数
5的相反数是-5。
相反数
相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。相反数的性质是他们的绝对值相同。
基本概念
1、相反数特性:若a.b互为相反数,则a+b=0,反之若a+b=0,则a、b互为相反数。
2、零的相反数是0。
3、相反数是成对出现,不能单独出现。
4、要把"相反数“与”相反意义的量“区分开来,"相反数”不但是数的符号相反,而且符号后面的数字必须相同,如同:+5与-5,而“具有相反意义的量”只要符号相反即可,如+3与-7。
5、求一个数的相反数只需这个数前面加上一个负号就可以了,若原数带有符号(不论正负),则应先添括号。
6、数字a的相反数是-a,-a的相反数是a。这里的a不一定是正数,所以-a也不一定就是负数。
7、在化简多重符号时应注意:一个正数的前面有偶数个“-”时,可以化简为这个数字本身。
8、在化简多重符号时应注意:一个正数前面有奇数个“-”号时,可以化简成为这个数的相反数。
代数意义
和是0的两个数互为相反数,0的相反数还是0。
1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a可以等于任何实数)
2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数
4、一个实数x的相反数y,实际上是R到R的一个映射:y=f(x)=-x。
从二维空间看,这个映射可以看作是旋转(180度)映射(圆心对称);这个映射也可以看作是翻折(180度)映射(轴对称);x=0,就是这个映射下的不动点。