求证: (x-b)(x-c)/(a-b)(a-c)+(x-c)(x-a)/(b-c)(b-a)+(x-a)(x-b)/(c-a)(c-b)=1 是个恒等式

 我来答
天罗网17
2022-06-28 · TA获得超过6200个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.8万
展开全部
(要知道:n次多项式之多有n个不同的根.如二次方程最多只有两个根.)
显然a,b,c互不相等,构造函数f(x)=
(x-b)(x-c)/(a-b)(a-c)+(x-c)(x-a)/(b-c)(b-a)+(x-a)(x-b)/(c-a)(c-b)-1
显然这个多项式至多是2次的.
而f(a)=f(b)=f(c)=0,即f(x)至少有三个根,这与它的次数最多是2次的矛盾,
所以f(x)≡0
即(x-b)(x-c)/(a-b)(a-c)+(x-c)(x-a)/(b-c)(b-a)+(x-a)(x-b)/(c-a)(c-b)=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式